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An approach is presented for the evaluation of the two distinct types of one-electron 
integrals arising from the ab initio pseudopotentiais introduced by Kahn and Goddard. The 
integrals are shown to reduce to a sum over products of angular and radial integrals, the latter 
being approximated by power and asymptotic series combined with appropriate recursion 
relations. The method is valid for arbitrary angular momenta of both the pseudopotential and 
the Cartesian Gaussian basis functions. 

I. INTRODUCTION 

A number of approaches have been made to the problem of defining potentials that 
mimic the effects of core electrons in a many-electron atom, One such approach 
which has met with considerable success is the ab initio pseudopotential originally 
formulated by Kahn and Goddard [ 1,2] and modified by others [3-5 1. In this 
approach the procedure for finding a pseudopotential for the core of an atom is to 
define a transformation from the atomic Hartree-Fock valence orbitals to nodeless, 
well-behaved pseudoorbitals. A numerical pseudopotential is then obtained by 
requiring that the pseudoorbitals reproduce the HF valence orbital energies. The 
numerical pseudopotential is then fit to a linear combination of Gaussians of the 
general form F2 exp(-<r2). The only task in employing such a pseudopotential in a 
molecular calculation using Cartesian Gaussian basis functions is the evaluation of 
the corresponding one-electron integrals. Several computer programs have been 
written to evaluate these integrals over s, p, d (and recently f) type ~seudo~ote~ti~~s~ 
In this paper we present a method of evaluation which has no inherent limitations on 
the angular momenta of either basis functions or pseudopotential. 

II. REDUCTION TO ANGULAR AND RADIAL INTEGRALS 

The form of the ab initio pseudopotential is 
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where L is the largest angular momentum orbital appearing in the core. The U,‘s are 
expressed analytically by a tit of the numerical potential to a linear combination of 
Gaussians: 

r2 [U,(r) - +] = F d,Jr”jexp(-&r2)], (2) 

where N, is the number of core electrons. Alternatively, the difference potential 
[U,(r) - u,+ *@->I may be tit with the same expansion, allowing employment of 
different sets of nj and cj for different 1. In all implementations of this pseudopotential 
to date, nj has been restricted to the values [0, 1, 21, though this work assumes no 
such restriction. In the development to follow, we will consider a single term in the 
expansion, abbreviating nj and rj as n’ and {. 

The general form of a Cartesian Gaussian function on center A is 

#A (n,, IA, mA , aA > = Wb , IA, m, , aA) ~194zAm” fw(-aA 4, 

where the normalization constant is 

(3) 

A@,, IA, rnA) (xA) = (2a, /7g314 (4a4)(n~+1A+mA”2 

x [(2nA - l)!! (2E, - l)!! (2m, - 1)!!]-i’2 (4) 

The calculation of integrals between #A and q& and the operator U(r,) results in two 
distinct types of integrals (which we aso refer to as type 1 and type 2). 

and 

where the Y,, are real, orthonormal spherical polynomials; xAs refers to the U,, 1 
term in the potential and l/as to the U, or U, - U,, i terms. 

The reduction of xAe p roceeds by transforming the exponential parts of 4, and q5B 
to center C in the following manner: 

where 

exp(-a, ri) = exp(--a, ri - 2a,CA + rc - aA ICA(2), (7) 

CA=C-AA. (8) 
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If we now define 

and 

= -2(a, CA f a,CB), 

a = aA + aB + <, 

xAB is simplified to 

D 
x AB = dn ABC d%-’ 

i 
- rc) X~Ay~z~~x~y~~~~ 

The next step is to expand exp(k . r,J in spherical coordinates: 

exp(k . rc> = 47~ f i M,(kr,) Y,&L #d rit,(&, #cl, 
.a=0 fl=-A 

where Ma is a modified spherical Bessel function of the first kind: 

Transforming x, , ya i zA , x,, y, , zg to point C and separating variables of integ~at~~~ 
we obtain 

xAB=Dygo go go go god (~)(~)~~)(~)(~)(~) 

x CA :“-“cA~-bCA,““-‘CB”-dCB:B-e6=BTB-I 

x f ~~+d,b+e,c+f~~+b+c+d+“f+“‘(k, a), 

.a=0 
(If3 

where 

& = x,/r, 9 etc., 

and where the angular integral is defined as 

f2yK = i 
il=-A 

Y,,(fJ,) j dQ 2”ff”Y,,($2> 
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and the radial integral as 

QT(k, a) = jam dr fl exp(-a?) M,(kr). (19) 

The product of powers of g,, gcand 2, in the angular integral may be expanded in a 
sum of spherical polynomials of orders up to I t J + K and differing from 1 t J + K 
by a multiple of 2. By orthogonality, then, the sum over 1 may be truncated at 
a+b+c+d+e+A and (@+b+c+d+e+f)-,I must be even. 

The reduction of the type 2 integral, l/as, p roceeds in a manner similar to that of 
xaB. When the exponential parts of dA and dB are transformed to point C we obtain 

x r:‘exp(--ori) 
[ 
1 d&+$&z~S exp(k, . rJ Ylm(Oc) 1 , (20) 

where DA,, and a are defined as before, and 

kA = -2aCA, (21) 

kB = -2aCB. (22) 

Transforming x,, yA, zA, x,, yB, z, to center C, and reexpressing exp(k, . rc) and 
ew(k, . rc), yAB becomes 

Y AB = 4nDABC 
a=0 b=O c=O d=O e=O f=O 

x CA ~-aCA~-bCA,mA-cCBnxa-dCBIB-eCBZmB-/ 
Y 

x.f fQ $bic+d+etf+n’ (k,,k,, a) i ~?$iQj$,, 
a=0 x=0 m=-1 

(23) 

where the angular integral J2$: is given by 

n abc _ 
aim - (24) rr=-a 

and the radial integral Q,” is given by 

QTx(k, , k,, a) = jim dr P’ exp(-a?) M,(k, r) M,(k,r). (25) 

As with the type 1 angular integral, L2;g may be reexpressed by expanding xaybzC as 
a sum of spherical polynomials of order up to a + b + c and differing from a + b + c 
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by a multiple of 2. Therefore, using the vector sum rule for spherical polynomials, the 
only nonzero terms in the sum over I are 

max(l-a-b-c,O)<L<E+a+b+c (26) 

and likewise for 1. Also consistent with the first type of angular inte 
E + a + b + c - L must be even. 

III. EVALUATION OF THE ANGULAR INTEGRALS 

To evaluate the angular integrals we first expand the real orthonormal spherical 
polynomials Y,, in terms of $3 and z^: 

The complete angular integrals are then 

The evaluation of the integral is straightforward: 

(4~) -I (. d,fJ zijTjik = 0 i,j or k odd, 

= (i - l)!! (j - l)!! (k - l)!? 
(i+j+k+ I)!! ’ 

i, j and k even. 

IV. TYPE 1 RADIALINTEGRAL, Q;(k,a) 

Gradshteyn and Ryzhik reexpress the type 1 radial integral as [S] 

Q;(k, a) = \/;fk”2-‘-201-“+“+“‘2RO((E + n + 1)/2; 1+ 3/2; k2/4a) 

(30) 
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where R is the ratio of gamma functions, 

R = ml + n + 1)/2)/~ f 3/2) = 
j/Y@+ n- l)!! 

2(2z + l)rr , n + I even, 
. . 

(32) 

JZ+n-l)!! 
(22 + l)!! ’ 

n+lodd, 

and 4 is the degenerate hypergeometric function. The confluent hypergeometric series 
for 4 is [7] 

(33) 

The resulting expression for Q;(k, a) is equivalently obtained by substitution of a 
power series for the modified spherical Bessel function M,(kr) in Eq. (19). An 
asymptotic series for 4 is given by [7] 

&a; b; z) = R -‘z’-’ exp(z) 1 + (’ - ‘ii1 - ‘) z-’ 

+ (b-a)@-a+ l)(l -am-a) z-*+**m . 

2! 1 (34) 

Although this series diverges, the magnitudes of the terms decrease until a minimum 
is reached, at which point the partial sum represents a best approximation to 4. 
Summing to this minimum gives IZfigure accuracy for the following n and z: 

n 0 12 3 4 5 6 7>7 
Z> 31. 28. 25. 23. 22. 20. 19. 18. 15. 

Note that the asymptotic form truncates for II + I even and n > 2 + 2 providing an 
exact analytical expression for 4. An exactly equivalent form for these n and I is 
found by noting [7] 

#(a; b; z) = exp(z) #(b - a; b; -z). 

Substitution of the confluent hypergeometric series yields 

(35) 

~(a; b; z) = exp(z) 
[ 

I - (b il:)’ + (b byi(:, 1,:: 1) z* + . . .] . (36) 

In contrast to the asymptotic series, -evaluation of this form for IZ + I even and 
IZ > I + 2 presents no problems for small z. For other n and Z, however, when it does 
not terminate, Eq. (36) is not useful, owing to differencing. 
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Recursion relations were derived and implemented to allow most Qys be 
calculated from just a few starting values. Referring back to Eq. (18) and d~s~uss~o~, 
we first note that only Q, atb+c+d+eiftn’ for which a $ b C e + d -t e +S-- ji is even 
are required, as all others are paired with vanishing angular integrals. Se~oud~y, we 
note a recursion relation on M,(x): 

M,(x) = M, - 26) - 
(2E- 1) 

X M,-lkxd. (37) 

Using this relation and integration by parts, a number of recursion relations on the 
Qy may be derived: 

Q:‘” =$Q;‘:- (38A) 

Q;l = (n + :, 1> [~cQ;+~ -@:,+:I, 

(n + I - 3) Q!;:,” + (38E) 

Q; = /+ 1) [2a~;:;-[k-(22+3)-$ 

Upon examination of the asymptotic form of Q;, Eqs. (38C) and (38F) are found to 
give serious differencing errors for k2/4a large. Likewise, the alternating series reveals 
that Eqs. (38B) and (38E) have a differencing problem for k2/4a small. Figure 1 
gives separate stable recurrence schemes for small and large k2/4a. S~tchi~g from 
one to the other at k2/4a = 3.0 yields a relative accuracy of IO-l3 in the Q;t* 

V. TYPE 2 RADIALINTEGRAL 

A. Double Power Series 

A double power series for the type 2 radial integral, QyJ((k,, k,, a), is suggested by 
substitution of power series for both modified spherical Bessel functions a~pe~i~~ in 
Eq. (25). From Abramowitz and Stegun [S] 
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A. Large k2/4a, n even 

L 

0 1 2 3 4 

“OS 

1 B 

2s B 

3 A B 

4D A B 

5 D A 

60 D A 

B. Large k2/4a, n odd 

L 

D 12 3 4 

C. Small k2/4a, n even 

I? 

0 1 2 3 4 

n0 C 

1 c 

ES c 

3 A C 

4D A S 

5 0 A 

6D D A 

D. Small k2/4a, n odd 

v: 

01234 

tl0 n0 

1 s 1F 

2 s 2 F 

30 E 3D F 

4 D E 4 D S 

5D D E 50 D S 

6 D D 6 D D 

FIG. 1. Recurrence algorithm for the type 1 radial integral Q;. S indicates the appropriate series 
given in Section IV. A, B, C, D, E, F refer to recursion relations, Eqs. (38A)-(38F). 

Therefore 

X 
I 

m dry +A+~+2j+2iexp(-ur2)~ 

0 

The integral is evaluated as 

.* 
I drrM exp(--ar2) = M even, 

0 

A4 odd. 

(40) 

(41) 
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After some rearrangement QTx becomes 

where 

T,= i <k;lk:>’ 
i=. (Z - i)! i!(U + 1 + 21- 2i)!! (2A + 1 + 2i)!! ’ 

TJ is now simply related to the hypergeometric function F(a, b; c; z): 

T,=[(2d+ 1 +21)!!1!(21+ l)!!j-’ 
x F(-I, --A - l/2 -I; 1 f 3/2; k;b/k;), 

where we have used 

F(a,b;c;z)= -f Ff. 
i=O 

Recursion relations on the 2% (Ref. [8, p. 558, Eqs. 15.2.10 and 15.2.113) allow a 
recursion relation to be derived for T,: 

where 

T ,+,=CO+Y,)T,+~(~-~~)TJ-,, (46) 

@+x+21+3) 
6 = - (I + 1)(2/I t 3 + 21)(2X + 3 + 24@ $ x + 2I+ I>@ f x + I + 2) 9 (47) 

P = - (I+ 1)(2:f 3 1 + 21) w + + 21) 4 

1 
Y = - (I$ 1)(2J + 3 + 1 f + 2q IW 24 6, 

W. Single Power Series 

A single power series for the radial integral is found by substituting a power series 
for just one of the modified spherical Bessel functions: 

Evaluation of the type 1 radial integral Q; for arbitrary n has already been discussed; 
however, the scheme is only practical when these quantities are obtained with a 
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minimum of effort. An upwards recursion relation on IZ is found in a manner similar 
to the other recursion relations presented in Section IV: 

Q;(k&=$ [(?L+zg) g-2+ (z-n+4k(ltn-3) g-41. (52) 

Thus, only Qi’” and Q$+A+2 are required initially to compute an arbitrary number 
of terms in the series. 

Owing to the power series expansion in k:/2a, one would expect the method to be 
inefficient when this quantity is large. When it is small, however, one might expect 
the method to be rapidly convergent, regardless of the size of ki/2a. Such is not the 
case for the following reasons. We may extract exp(ki/4a) from the QTtn+2j, 
hopefully leaving quantities that, cannot become too large. We compare this with 
exp[(k, + kB)2/4a] that is extracted from the points and weights expression 
(Eqs. (57) and (60)) derived in the next section, It is apparent that the possibly large 
crossterm exp(k, k,/2a) is still hidden in Eq. (51). Not only can this result in 
overflows, the number of terms in the series may be prohibitive. For these reasons, an 
effective upper limit to the utility of this method was found to be (kA + kJ2/2a = 100 
when approximately 70 terms are required to give Q,$ (arbitrary N, L, 1) to an 
accuracy of 10-13. 

C. Gaussian Points and Weights Method 

We can write the modified spherical Bessel function Ml(z) in exponential form as 

M,(z) = &I? J-z) exp(z) - (-1)’ R,(z) exp(-z) (53) 

Rdz) = kzo k!(Z- k)! 
’ (1-t kY (2z>-k 

’ (54) 

For large z, M,(z) becomes simply the first term in Eq. (53). Thus, when k,/& and 
k,/& are large, the type 2 radial integral is approximated by (after a change of 
variable r + r/d 

Q%ix(k, 3 k~ 9 a) - 4k, kB j, --!-imdr (-$.=)NZexp (--r’+$r+-$$r]. (55) 

This form immediately suggests the use of a Gaussian points and weights scheme. We 
proceed by differentiating the integrand to find a maximum at 

r, = $(kA + k,)/& & f[i(k, + k,)*/a + 2(N-- 2)]“” (56) 



CALCULATION OF INTEGRALS OVER PSEUDOPOTENTIALS 293 

For the range of i(k, + k,)f\r f a or which the method ~itimat~iy proved practical, t 
effect of the 2(N-- 2) term was very small. Therefore, in the interest of kee 
independent of N, we approximate the maximum as 

rc = +(k, + k&b. (57) 

A change of variables t = r- Y, should minimize the number of points in the 
numerical integration: 

where 

We now extract 

X exp[-2r,t - rz] 

exp [%(t+r,)j and exp 

from M, and Ml, respectively (to give kfi and Mi). Then S reduces to 

.f(t,rc,kA,kB,a)= (yk)NMA [.$(t+r,) 

X exp(rf). (60) 

This maneuver forces kli and Mj, to be of reasonable magnitude and allows ~~~(~~~ 
to be extracted and combined directly with the exponential in DABc. M;(z) is 
calculated using Eqs. (53) and (54) for z > 5.0. For z > 16.1, only the first term is 
required. When z < 5.0, the power series in Eq. (39) eliminates differencing prQb~erns” 

Equation (58) suggests calculating zeros of polynomials orthogonal with weight 
function exp(--r2) over the integration range [--rC, co]. It is inconvenient, ~owev~~~ 
to recalculate these zeros for each rc. For sufficiently large rC, f(-~~) is negligi 
compared with f(0) and we may employ the integration range [-CD, 00 
within this approximation the orthogonal polynomials are simply the 
polynomials. A table of the zeros and weights for up to 20 degree polynomials is 
found in Abramowitz and Stegun [8]. 

The number of integration points required for a given accuracy decreases with 
increasing (kA + kJ2/2 a, showing considerable dependence on A, x and N, also, The 
following conservative scheme produced Qnx N for all J., X and M to a relative a~~~ra~y 
of 10-13. 
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Range of (kA + &.)*/2a Number of points 

[lo*, 1031 20 
[103, 1051 10 

> IO5 5 

Equations (58) and (60) may be used to calculate a crude approximation to QS. 
Using only the first term in R,(z) to calculate M,(z), 

Q% M exp(r,2) 
4a"/*'(N-*)kA kB dt(t + rJN-’ exp(--t*) 

c 

Approximating t + r, as Y, and the integration limits as [--a~, co], we arrive at 

QS z N-2 &(4kA kB). 

(61) 

(62) 

This expression may then be used to determine whether a particular term in Eq. (2) is 
negligible, before any effort is spent calculating the possibly large number of radial 
integrals. 

VI. THE COMPUTER PROGRAM 

A computer program called MELDPS based on this method was written for the 
CDC CYBER 170/750 computer at the University of Washington and the 
CDC 7600 at Lawrence Livermore Laboratory. Testing was performed by comparing 
with a program from Los Alamos Scientific Laboratory (LASLPS) which had 
originated with Luis Kahn at Battelle Memorial Institute. Tests yielded ten figure 
agreement. Both MELDPS and LASLPS gave a generalized valence bond energy of 
-11.385102 hartrees for the iodine atom. This differs appreciably from the result 
reported by Kahn et al. [2], -11.38354 hartrees, obtained with Kahn’s earlier Cal 
Tech program. 

Timing showed MELDPS to be factors between 1.5 and 3 slower than LASLPS; 
however, for problems of reasonable size, the time spent computing pseudopotential 
integrals is small compared with that spent computing two-electron integrals. Alter- 
native methods based on equations in Ref. [9] were also tried but proved to have 
numerical stability problems. 
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